
Anthropomorphic Chess Evaluation Via Qualitative Analysis

Luke Salamone

Northwestern University McCormick School of Engineering, Evanston, Illinois
Submitted 8 June 2021

Introduction

Chess is a two-player, perfect information, zero-sum

game. Chess-playing computer programs, otherwise

known as chess engines, have existed since at least

the late 1940s (UoMCompsci, 2012). Because it

was said to require the perfect combination of

planning, strategy, psychology, and calculation,

chess was once thought to be an activity directly

correlated with intelligence, and that a truly

intelligent computer should be able to defeat

humans. Although chess engines have long since

surpassed the capabilities of human grandmasters,

several opportunities still exist for an engine that

reasons in a more human-like way.

This paper contains two related proposals. The first

is a chess engine tournament, unique in the type of

engine which will be permitted to enter and likely to

succeed. Importantly, the vast majority of engines

currently holding the highest performance ratings

will likely not be effective.

The second proposal is the outlines of a chess

engine that is likely to be successful in this

tournament, taking advantage of the highly

qualitative nature of chess position evaluation.

Although it is unlikely to perform as strongly against

top-performing engines, there are several distinct

advantages of such an engine which are outlined in

§3A. In short, there is likely to be a great deal of

educational value as well as financial incentive

driving the construction of highly successful

qualitative chess engines.

§1: Background

The general algorithm for performing search in

zero-sum games like chess is known as minimax.

While the details of minimax can be found outside of

this paper, the algorithm generally functions by

attempting to find the optimal move under the

assumption that an opponent will also play the

optimal move. Minimax is essentially a depth-first

search of the game tree, with leaf nodes assigned a

value from a static evaluation function.

Minimax is often augmented with “alpha-beta

pruning” to reduce the number of positions which

will be evaluated. This effectively cuts the

computational complexity exponent in half by

removing from consideration those branches which

cannot affect the final result (Russell & Norvig,

2010, 167).

1

Salamone

There are several challenges to the minimax

function which require attention. The primary and

most fundamental challenge to minimax is the sheer

size of the game tree, containing an immense

number of possible positions overall. This makes an

exhaustive search impossible. Consequently, many

of the nodes evaluated during minimax will not be

terminal (end of game) nodes, and will need to be

assessed using heuristics. Because most nodes are

evaluated using the static evaluation function, the

overall performance of minimax is highly dependent

on the performance of the static evaluation function.

Other challenges in minimax evaluation exist as

well. In particular, a phenomenon dubbed the

“Horizon Effect” is a peculiar failure mode of

minimax searches. The Horizon Effect, first

described by Berliner (1975, I). His illustration of the

problem (his Figure 1.3) is reproduced in Figure 1.

Algorithms that do not account for the Horizon Effect

will try to “push” bad outcomes of their search

beyond their search horizon, instead opting to make

hopeless moves which only serve to delay the

inevitable. Notably, because human players are not

limited by search depth, they are less susceptible.

The Horizon Effect and its implications will be

discussed later on.

Figure 1. White to move. Here, white’s bishop on a4 is

doomed, attacked by black’s pawn on b5. White could

delay the inevitable by moving his bishop to b3, but then

black simply seals the bishop’s fate with pawn to c4. In that

position, white does not have time to save his bishop, and

it will be captured no matter what on the next move by the

pawn on c4. Due to the Horizon Effect, at a limited depth

white will not recognize this and will play hopeless moves

like pawn from e4 to e5, temporarily attacking the knight

but easily parried by capturing with the pawn on d6. This

phenomenon is deemed the “Horizon Effect” because by

pushing negative outcomes beyond the “horizon” of

calculation depth, the engine is able to trick itself into

believing that the problem doesn’t exist. A true case of

“see no evil”.

§ 1A: Early Chess Engines
An exhaustive history of chess engines is beyond

the scope of this document, but chess engines have

generally coevolved with the computers they run on.

Because early engines had far less computing

power to lean on than modern computers, many of

the early pioneers were quite enthusiastic about

“selective search” strategies.

In any given position, there are many possible

moves. By some estimates, chess has an average

branching factor of around 30, with other estimates

2

Salamone

putting the number around 40 . In any case, it is1

possible to dramatically reduce this number by

employing “selective search”, which means

excluding nodes from recursive tree search

altogether. Reducing the number of possible moves

that will be explored in any given position promises

dramatic computational speedups, allowing the tree

to be searched deeper at the expense of width.

Given the slow speeds (by contemporary standards)

of early computers, the allure of such a technique

should be clear.

An early attempt to narrow the search tree was

proposed by Hans Berliner, who in 1975 devised

CAPS-II which utilized a tree search algorithm with

five total “reference levels” including ALPHA and

BETA (IV-3). His paper also was cognizant of the

work of Chase and Simon from two years prior,

recognizing the need for a bottom-up board

representation (II-1). Unfortunately, his board

representation was largely geometrical and included

little in the way of qualitative relationships between

pieces (II-6). Nevertheless, the resulting program

was able to solve tactical puzzles in a quite

impressive manner (V-10).

Another example of the use of such a narrowed

search tree is PARADISE (PAttern Recognition

Applied to DIrecting SEarch). This system used a

knowledge base containing 200 “production rules” to

match board patterns and determine the best move

at any time. An example production rule is shown in

Figure 2.

1 It isn’t easy to find a concrete value for the branching
factor of chess. One source claims, without citation, that
the branching factor may be up to 40 (Winston, 1992, 117).
However, a more recent statistical analysis of 2.5 million
chess games put the real number closer to 31 (Barnes,
2019). This branching factor depends on the stage of the
game; middle games have far more available moves than
end games. Because not all games are the same length,
shorter games will tend to have higher average branching
factors than longer ones. Barnes also includes a quite
interesting graphic which readers are encouraged to view
at the citation URL.

((DMP1)
(NEVER
(EXISTS (SQ)
(PATTERN MOBIL DMP1 SQ)))

(NEVER
(EXISTS (P1)
(PATTERN ENPRISP1 DMP1)))

(ACTION ATTACK
((OTHER-COLOR DMP1)
(LOCATION DMP1))

(THREAT
(WIN DMP1))

(LIKELY 0)))

Figure 2. A sample production rule from the PARADISE

knowledge base. This production rule detects and acts

upon the opponent’s trapped pieces. A trapped piece is

identified as a non-pawn defensive piece which cannot

move to another square without being captured and is not

already attacked. Finally, the production rule describes the

threat of this action (winning the piece) and how likely it is

to succeed.

Because the tree search was narrower, the system

was able to search to higher depths. Still, because

of hardware limitations of the time, PARADISE was

extremely slow, generating only 109 nodes in 20

minutes of search time (Wilkins, 1980, 167).

PARADISE executes static analysis on a position

using its many production rules with the ultimate

goal of creating and executing a plan. Matched

production rules post concepts to the database in

addition to information about the intentions of the

concept and its likelihood of success (Wilkins, 1980,

172-173).

The program is then able to use this information to

form a plan, which is a set of actions for the side to

move, along with corresponding plans for each

defensive alternative. Because there may be many

potential alternatives at each move, this plan is

necessarily non-linear, containing many branches

instead.

3

Salamone

(((WN N5)

(((BN N4) (SAFEMOVE WR Q7)

(((BK NIL) (SAFECAPTURE WR BR))

((ANYBUT BK) (SAFECAPTURE WR BK))))

((BN N4)

(CHECKMOVEWR Q7)

(BK NIL)

(SAFECAPTURE WR BQ))))

((THREAT (PLUS

(EXCHVAL WN N5)

(FORK WR BK BR)))

(LIKELY 0))

((THREAT (PLUS

(EXCHVAL WN N5)

(EXCHWR BQ)))

(LIKELY 0)))

Figure 3. White to move, PARADISE has produced a plan

which involves checking the black king by moving the

knight to g5, then checking the black king by moving the

rook to d7. Depending on black’s next move white will then

try to either capture the queen on d4 or the rook on d7.

An example of such a plan is reproduced in Figure

3 above (Wilkins, 1980, 174-175) .2

2 An interesting sidebar about this position is that based
upon Stockfish analysis, this position results in inescapable
checkmate for black. That is, even with optimal play, black
will be checkmated in 19 or fewer moves. The winning
sequence begins with white moving his queen to e5,
exploiting the pin on the f6 pawn from the f1 rook.

Searching only selective lines is more difficult to

implement than full-width search. Further, selective

searches may miss important continuations of a

position, causing the computer to select an incorrect

move (Frey & Atkin, 1979, 126-128). It was for this

reason that Berliner himself, an original proponent

for the application of strict logical rules in chess,

decided to seek brute-force search methods instead

(McClain, 2017) .3

Previous work largely focused on creating the most

powerful chess engine on the hardware which was

available. With the singular goal of defeating human

players, sacrificing explainability for the sake of

computational expediency was a logical and

understandable tradeoff to make. In the present day,

however, there is no longer a question of whether

humans or computers are superior chess players. It

seems quite clear that the time has come to revisit

some of the tradeoffs made in the past.

§1B: Modern Chess Engines
Stockfish Classic is currently the #1 ranked chess

engine in the world in the blitz chess category

(Chess.com, 2020). Stockfish is an open-source

chess engine which performs a “full width” search

on the game tree. Leaf nodes are evaluated using

either a classical evaluation function, or more

recently, a neural network evaluator called NNUE.

The classical evaluation function uses a set of

around 30 factors weighted empirically using a

dedicated testing framework called Fishtest.

Altogether, the project has around 200 contributors

(Stockfish, 2021). Optimized for speed, Stockfish

typically evaluates around 5 million nodes per

second on a typical 4-core computer (Chessify,

2021).

3 In some literature this brute-force full-width calculation
strategy is known as a “Shannon type-A” algorithm (Frey &
Atkin, 1979, 126; Slate & Atkin, 1983, 113). This is in
contrast with a Shannon type-B algorithm, which uses a
pruned evaluation tree.

4

Salamone

Neural networks may also be used more directly.

Leela Chess Zero, also known as Lc0 is another

open-source chess engine, modeled after

DeepMind’s AlphaZero chess engine. Lc0 uses

Predictor + Upper Confidence Bound tree search

(PUCT) to search its game tree. New nodes are

evaluated by iteratively choosing moves from a

probability distribution until an unexplored node has

been reached, at which point the node value will be

estimated by a neural network and propagated back

up the tree. PUCT is very similar to Monte Carlo

Tree Search, but with game “rollouts” replaced by

neural network evaluations (Leela Chess Zero,

2020).

One other notable engine is Maia Chess. Maia is

notable in that its objective is to model human

behavior rather than to perform optimally. This is

interesting because Maia is in many cases trained to

perform suboptimally. The other notable feature

about Maia is the unusual manner in which moves

are selected: instead of performing any type of tree

search at all, the engine simply returns the inference

from a single neural network using the board

position as input (McIlroy-Young et al., 2020, 6).

§2: Qualitative Analysis
Qualitatively, there are many aspects to a chess

game that may be captured. Rather than

enumerating them here, it seems far more valuable

to use this space making note of the way that a

human grandmaster analyzes a position. It will

become quite apparent that at the highest levels, the

qualitative aspects of position analysis dominate

over quantitative aspects (i.e. the number and value

of each piece).

In the selected lecture, Grandmaster Varuzhan

Akobian details a game he played previously. At a

key moment of the game, Akobian sacrificed his

rook for a key pawn in the center of the board. The

resulting position is reproduced for convenience in

Figure 4.

Figure 4. Quantitative analysis would posit that black is

winning due to his extra rook for white’s knight and pawn.

However, qualitative analysis provides a more complete

picture of black’s predicament.

His analysis starts at 25:15 in the video (Saint Louis

Chess Club, 2013):

I would like you to spend a minute or two just

to give me the evaluation of this position. It

may not seem that clear because I’m down the

exchange . I have a knight and a pawn for a4

rook. Rook is valued 5, knight and a pawn is 4.

It may seem like I’m down a pawn here. But

what do you think is the proper evaluation of

this position?

...Basically white is very active. There are a

few other things we can mention about white’s

position, that it’s very strong. What else is very

strong? White’s king is very safe, he cannot

4 Novice chess players are taught that chess pieces have
quantitative values, which may come into consideration
when exchanging one piece for another. These values are
measured in terms of pawns. Knights and bishops are
generally understood to be worth 3 pawns, rooks are worth
5, and queens are worth 9.

5

Salamone

attack me. But how about the black king? Do

you think the black king is very safe? [No.] For

example, I could put my queen here [the e4

square] then I have a battery! Remember

when we have a queen and a bishop on the

same diagonal we call that a battery. And

suddenly if I can deflect this queen [black

queen on the g7 square] I will just go queen

takes pawn, checkmate!

His dark square bishop is basically trapped

behind his own pawns so it’s ineffective. . . .

My bishop is very active. . . . And one more

thing that you can mention. Passed pawn,

exactly! And it’s a very strong passed pawn

because with a knight on d6 very quickly [the

pawn] will turn into [a queen].

. . . How much advantage does white have

here? Big advantage, slight advantage, maybe

winning? . . . We’re not going to use Houdini [a

chess engine], Houdini will probably say black

is slightly worse. But in practical play, I would

be very comfortable to play this against

anybody, and pretty comfortable I can win this

position for white.

Note that quantitative analysis is almost entirely

absent from GM Akobian’s evaluation. Towards the

beginning he mentions that he has sacrificed his

rook for a knight and a pawn, and consequently is at

a material deficit. However, he quickly discards this

shallow evaluation, going so far as to label his

subsequent qualitative evaluation as the “proper”

evaluation.

GM Akobian goes on to mention several other

qualitative features of the position which are difficult

to assign quantitative value to. Firstly, the activity of

his pieces means that it is much easier to play the

position as white because his pieces are on better

squares, including some deep in black’s half of the

board. The lack of activity is mentioned later on,

noting that black’s bishop is essentially trapped

behind his own pieces.

King safety is another difficult thing to quantify. In

the given position, it is difficult to find a way that

black can even check the white king. Moving the d8

rook to b1 will take 2 moves, and even then the b1

square is guarded by the bishop on d3. So the white

king is indeed quite safe. In contrast black king is

quite vulnerable, guarded mainly by the black

queen, who is herself vulnerable to deflection or5

direct attack.

GM Akobian emphasizes the weakness of black’s

king by sketching out a simple game-winning

checkmate plan: arrange the bishop and queen in a

battery which attacks the h7 pawn, deflect the black

queen, and deliver checkmate with the queen by

taking the h7 pawn. Although it is not immediately

clear how to implement the plan, this type of simple

plan creates a well-defined long-term “threat” that

black must contend with.

Another threat he mentions is encompassed by

white’s passed pawn on c5. This pawn may6

become a queen, which would become an

insurmountable advantage for white. Therefore, this

threat is another long-term vulnerability for black.

Finally, note that GM Akobian does not assign a

quantitative value to the board position, but rather a

“very comfortable to win” assessment. Very little of

6 A passed pawn is a pawn which cannot be stopped or
attacked by an opponent’s pawns. This occurs when there
are no opponent pawns in the “file” (vertical column) of the
pawn, as well as the file to the left and the right, if
applicable. For example, a pawn in the C file is a passed
pawn if there are no opponent pawns in the B, C or D files.
A pawn in the H file is passed if there are no opponent
pawns in the G or H files.

5 Deflection is a chess tactic which involves “distracting” an
opponent’s piece which plays an important defensive role.
For example, a piece which is defending two pieces
simultaneously may be deflected by capturing one of the
defended pieces.

6

Salamone

this analysis involves quantities, but rather

qualitative situations which must be dealt with.

Consequently, it seems that qualitative reasoning is

an ideal tool which a chess engine might use.

The nature of expert-level perception experienced

by GM Akobian was studied directly in a 1973 paper

by Chase and Simon. Participants of three different

levels of chess ability (a master-level player, an

experienced class A player, and a novice) were

asked to complete two chess-related cognitive

tasks. The first was a perception task, requiring him

to reproduce a chess position on an adjacent board

as quickly as possible, with the model board in plain

view. The second task was a memory task, requiring

participants to reproduce a position from memory

after viewing it for only 5 seconds (page 58).

Importantly, the perceptual study attended to chess

players’ tendencies to “chunk” the board position as

they reproduced positions, tending to remember

groups of interrelated pieces. These pieces tended

to have relationships which the authors

characterized in five ways: a piece attacks another,

a piece defends another, two pieces are adjacent,

two pieces are the same color, two pieces are the

same type (page 68).

The results of the study found that “the C, S, and

null relations are low because subjects are placing

pieces which usually have multiple relations. Thus,

from the within-glance relations, it appears that

subjects are noticing the pawn structure, clusters of

pieces of the same color, and attack and defense

relations over small spatial distances.” (page 68). In

other words, it seems likely that human players are

quite attentive to certain types of qualitative

relationships between pieces.

§3: A Qualitative Chess Engine
It is unlikely that a qualitative chess engine will be

able to entirely do away with the basic structural

algorithm involved in chess calculations, i.e.

minimax. We would like our qualitative engine to

calculate in a way most similar to humans, and thus

will require some level of ply depth to the

calculations. However, a qualitative engine will have

a much stronger sense of the “flow” of the game,

and will thus explore fewer branches. Rather than

considering each position as discrete, a qualitative

engine should note how each move guides the

evolution of the chess board position.

It is important to note that a qualitative chess engine

may not be the most computationally efficient, a

factor which was the primary motivation during the

period of time when top chess engines needed to be

run on supercomputers and every ounce of

performance needed to be squeezed out of the

machine. A qualitative engine should instead favor

explainability over performance whenever possible.

Specifically, it would be most ideal for an engine to

produce an explanation of which moves were

considered and why a particular move was chosen.

More modern qualitative research can improve upon

Wilkins’ knowledge-based PARADISE approach. It

is important to recognize that his knowledge base is

quite similar in nature to the FAC component of the

retrieval model presented in (Forbus et al., 1995),

but does not take advantage of the performance

speedups presented there. Because of the high

number of positional examples available online

(Lichess, 2021), there is a huge opportunity for a

performant analogical retrieval system at present.

The MAC/FAC retrieval system could pay huge

performance dividends in retrieval if applied to this

problem.

Specifically, the Lichess database referenced above

contains 1,737,489 chess “puzzles” as of the time of

7

Salamone

writing. A chess puzzle is simply a chess board

position in which players are encouraged to find the

best move. Each puzzle relates to one or more

chess “themes” (e.g. “mate in 1”, “pin”, “discovered

attack”, etc.), analogous to Wilkins’ concepts

outlined above. Each puzzle also includes the best

move to make in the position. Some research will

need to be done to derive meaning from this best

move, relating it by analogy to the current position

being evaluated by the engine.

Qualitative spatial calculi may also be used to

construct more psychologically plausible models of

chess positions than simply noting which pieces

occupy which squares, seeking to emulate the

models suggested by Chase and Simon. Chess

pieces have intricate relationships which can be

captured, and which change whenever a piece

moves to another square. Importantly, however, not

all relationships are affected by the movement of a

single chess piece, suggesting that performance

gains may be realized by recomputing only those

relationships which have changed.

Figure 5. White to move. From this image, many basic

piece relationships are apparent with only 8 pieces left on

the board. Importantly, the black king is defending the

black queen. The black queen is also being attacked by

the white queen, and is attacking the white queen. White’s

queen is undefended, a state sometimes referred to as

hanging.

These relationships reveal the opportunity for a tactic.

White can simultaneously move his rook to attack black’s

king (danger levels) and take advantage of the defensive

connection between the black king and queen with the

move rook to b8. This forces black to move his king,

removing the defense of his queen. In this position, black’s

queen can be freely captured by white’s queen. Due to the

mobility advantages of a queen over a rook, this is a

favorable move sequence for white.

It is likely that low-level piece relationships may give

rise to higher level relationships and tactics. For

example, the concept of “capturing the defender”

arises from the concept of attacking a piece A which

defends B, which works when pieces A and B are

attacked by pieces C and D of opposing colors. And

in the case of Figure 5 above, a defender may be

“deflected” to win the piece it is defending.

Defensive relationships may be thought of in a chain

or directed graph, with each piece defending

another and the safety of a piece being considered

in relation to its connection to a defensive group.

§3A: Uses for a qualitative chess engine
There are many benefits to reopening the pursuit of

qualitative reasoning in chess. The first and most

clear value proposition is that qualitative reasoning

is likely to serve as a more plausible model for how

humans think about the game. This is evidenced by

the fact that as Chase and Simon found, chess

players do not “see” the whole board at once, but

rather in chunks of interrelated pieces. Even if the

details of human mental models differ slightly from

the implementation of a qualitative reasoning

engine, it will be able to provide a traceable account

of its decision-making process, an important step

towards explainability.

Current top chess engines reason about chess in

ways that are quite contrary to human intuition.

8

Salamone

Stockfish uses full-width search, considering each

move in each position without prejudice and

assigning numerical values to each position. As we

saw from the analysis from GM Akobian, qualitative

evaluations are far more meaningful to humans.

Other chess engines approach chess in an even

more alien way. Specifically, it is unlikely that any

engine which makes heavy use of neural evaluation

functions will model human-derived organic

strategies in ways which chess players will

recognize. At the far end of this spectrum is the fully

neural Maia chess engine, but even Lc0’s

Monte-Carlo tree search precludes consideration for

cognitive plausibility.

Qualitative chess engines which are able to better

reproduce the types of chess reasoning used by top

human chess players are also likely to serve as

better pedagogical tools for those interested in

studying chess. This applies at every level, from

beginner to grandmaster. The skill level of such a

chess engine would be quite easily tunable simply

by disabling more advanced knowledge from the

knowledge base. This is a far more natural method

of “handicapping” than the search depth limitations

used in current chess engines. Each piece of

knowledge becomes a tunable parameter to the

engine. As students learn concepts, the

corresponding representations in the knowledge

base could be enabled, allowing for gradual learning

in a far more accessible way. In fact, it is likely true

that a qualitative chess engine could outperform

human grandmasters (who often teach chess to

others) in this respect.

Finally, it is likely that a qualitative engine would

become a key component of a first line of defense

against cheating in chess. Most cheating is

performed by using assistance from a chess engine

during online games with unsuspecting opponents.

Consulting a functionally omniscient computer

program can thus provide a cheater with a

theoretically insurmountable advantage.

In an interview with the Perpetual Chess Podcast,

Chris Callahan of the popular chess website

LiChess.org stated that the majority of employees of

the website work primarily to detect cheaters and

yet the problem still persists (Perpetual Chess

Podcast, 2021, 38:00). By exploiting the difference

between conventional full-width engines like

Stockfish and a qualitative evaluation, those working

to detect cheaters will be better equipped to detect

“suspicious” moves. However, qualitative chess

engines are unlikely to be able to completely replace

human moderation.

§4: Intentional limitation
In order to encourage reasoning and gameplay

which resembles human games, this paper also

proposes a regular computer chess tournament be

held between chess engines. However, because we

are not interested in the best overall chess engine,

but one which can reason like a human might, the

rules of the tournament will be adjusted in several

key ways to discourage brute-force computational

methods.

Because we expect few entrants in early iterations

of this special tournament, engineering an automatic

enforcement mechanism for the limitations

stipulated in this paper are likely to be unnecessary.

Engine compliance may simply be verified through

manual inspection. Future iterations may include

further safeguards, potentially separating the

position evaluation function and directly counting the

number of invocations while arbitrating the

tournament to directly verify compliance.

§4A: Position limitation
Firstly, competing chess engines will be limited in

the number of board positions they can evaluate

during any one move. Because human

9

Salamone

grandmasters evaluate around 100 positions before

making a move, the tournament arbitration system

will artificially impose this limitation on all competing

engines.

This cap immediately creates an issue for full-width

chess engines because of chess’ high branching

factor. Were an engine to evaluate each possible

move, it would perform quite poorly in board

positions with many possible plies and replies

available, rarely reaching a depth of more than 2 or

3. As a result, any engine which naively assesses a

chess board would perform quite poorly in this

setup.

The practical upshot of the position limitation is that

the engine will be incentivized to gather as much

relevant information about a position as possible

rather than optimizing for the maximum number of

positions.

§4B: Position saliency
Additionally, engines will be required to implement

scheduling logic which takes the time remaining into

consideration. While this creates the immediate

problem of how an engine should allocate its time, it

creates the ancillary challenge of evaluating a

position’s quiescence. Positions which are “quiet”

and have few forcing moves require less evaluation

than positions in which there are many non-forcing

moves.

This requirement immediately motivates a

qualitative chess engine to recognize the futility of

falling prey to the Horizon Effect. The Horizon Effect

causes engines to waste many position calculations

pursuing delaying moves which amount to hopeless

rabbit trails, while any human evaluation can quite

quickly understand the futility and terminate his

search. A qualitative analysis which took this factor

into consideration would be able to save a great

deal of position calculations, behaving more like a

human player.

Conclusion
Given that computers have achieved and sustained

superhuman capabilities in the domain of chess, the

next frontier is not in building yet stronger engines,

but in harnessing the immense power to reason

about the game in ways that humans do. Qualitative

reasoning provides many advantageous tools to this

end. Specifically, qualitative spatial calculi and

analogical retrieval promise to provide novel and

intuitive ways to reason about previously seen

moves and think about the game.

References

● Barnes, D. (2019, April 30). What is the average
number of legal moves per turn? Chess Stack
Exchange. Retrieved June 3, 2021, from
https://chess.stackexchange.com/questions/231
35/what-is-the-average-number-of-legal-moves-
per-turn/24325#24325

● Berliner, H. J. (1975). Chess as problem solving:
the development of a tactics analyzer.

● Chase, W. G., & Simon, H. A. (1973). Perception
in chess. Cognitive Psychology, 4(1), 55-81.
10.1016/0010-0285(73)90004-2

● Chess.com. (2020, October 31). Chess.com
Computer Ratings: Nov. 2020‎. Chess.com.
https://www.chess.com/article/view/chess-com-c
omputer-ratings-nov-2020

● Chessify. (2021, January 22). NPS - What are
the "Nodes per Second" in Chess Engine
Analysis. Chessify.
https://chessify.me/blog/nps-what-are-the-nodes-
per-second-in-chess-engine-analysis

● Forbus, K. D., Denter, D., & Law, K. (1995).
MAC/FAC: A model of similarity-based retrieval.
Cognitive Science, 19(2), 141-205.
10.1016/0364-0213(95)90016-0

● Frey, P. W., & Atkin, L. R. (1979). Creating a
Chess Player. Byte, 4(1), 126-145.
https://archive.org/details/byte-magazine-1979-0
1/mode/2up

● Leela Chess Zero. (2020, May 25). Technical
Explanation of Leela Chess Zero. Leela Chess
Zero.

10

Salamone

https://lczero.org/dev/wiki/technical-explanation-
of-leela-chess-zero/

● Lichess. (2021, May 16). lichess.org open
database. Lichess. Retrieved June 6, 2021, from
https://database.lichess.org/#puzzles

● McClain, D. L. (2017, January 16). Hans
Berliner, Master Chess Player and Programmer,
Dies at 87. The New York Times.
https://www.nytimes.com/2017/01/16/business/h
ans-berliner-master-chess-player-and-programm
er-dies-at-87.html

● McIlroy-Young, R., Sen, S., Kleinberg, J., &
Anderson, A. (2020). Aligning Superhuman AI
with Human Behavior: Chess as a Model
System. Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge
Discovery & Data Mining.
10.1145/3394486.3403219

● Perpetual Chess Podcast. (2021, April 8). Chris
Callahan of LiChess.org on their Twitch
program, cheat detection,Open source engines
and more [Video]. Youtube.
https://www.youtube.com/watch?v=bmIFdrUVHX
w

● Russell, S. J., & Norvig, P. (2010). Artificial
Intelligence: A Modern Approach (Third Edition
ed.). Prentice Hall.

● Saint Louis Chess Club. (2013, March 11). Play
Against the King's Indian Defense - GM
Varuzhan Akobian - 2013.02.27 [Video].
YouTube.
https://www.youtube.com/watch?v=h80Mu4N6o
YI

● Slate, D. J., & Atkin, L. R. (1983). CHESS
4.5—The Northwestern University chess
program. In Chess Skill in Man and Machine (pp.
82-118). Springer, New York, NY.
10.1007/978-1-4612-5515-4_4

● Stockfish. (2021, June 3). Stockfish. Stockfish:
UCI Chess Engine. Retrieved June 3, 2021,
from
https://github.com/official-stockfish/Stockfish

● UoMCompsci. (2012, June 25). Kasparov vs
Turing [Video]. Youtube.
https://www.youtube.com/watch?v=wrxdWkjmhK
g

● Wilkins, D. (1980). Using Patterns and Plans in
Chess. Artificial Intelligence, 14(2), 165-203.
10.1016/0004-3702(80)90039-9

● Winston, P. H. (1992). Artificial Intelligence (3rd
ed.). Addison-Wesley Publishing Company.
https://courses.csail.mit.edu/6.034f/ai3/rest.pdf

11

